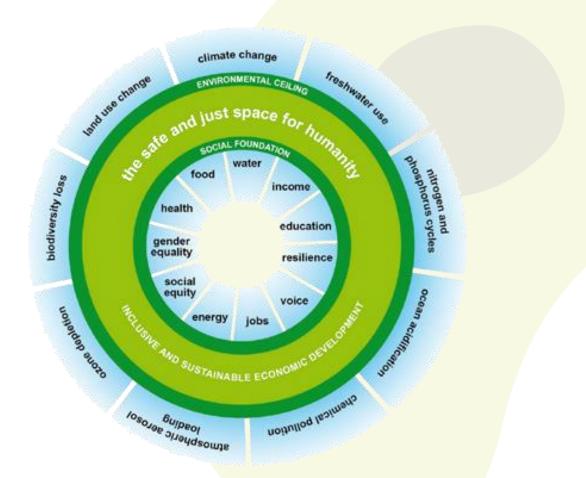


GMO RISK ANALYSIS SHORT COURSE

University of Pretoria, 4 September 2019

OVERVIEW

Risk Analysis Background


Risk Analysis Framework

Decision making

Conclusions

DEFINING SUSTAINABILITY

- The social foundation consists of the eleven top social priorities identified by the world's governments
- Between social and planetary boundaries lies an environmentally safe and socially just space in which humanity can thrive.

RISK ANALYSIS OF GMOS-BACKGROUND

Harm - is an adverse outcome or impact.

Hazard - is any potential source of harm (the possibility to cause harm).

Risk - is the probability of a harm occurring under defined circumstances.

Safety - is the condition of not being exposed to or being protected from harm; not likely to be harmed.

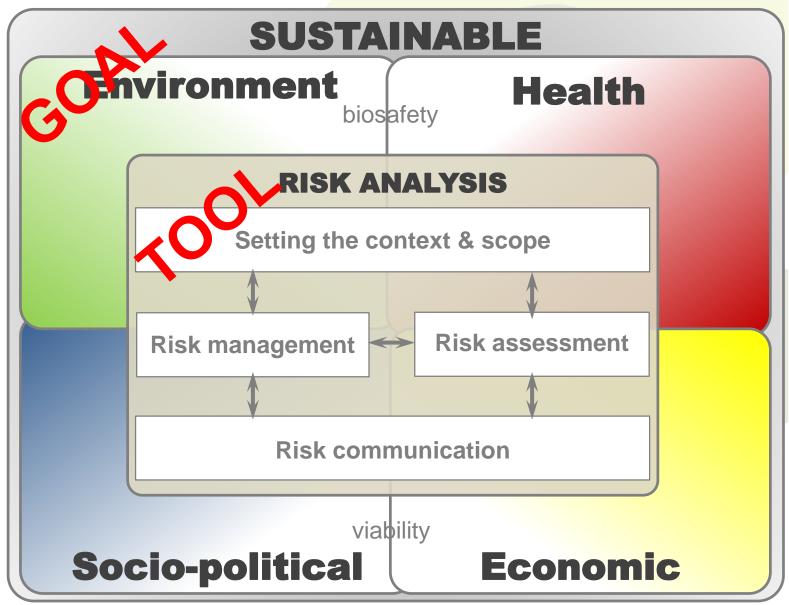
RISK ANALYSIS OF GMOs-BACKGROUND

 Risk analysis frameworks has gone through considerable development from when regulators and scientists first started characterising risks from GMOs

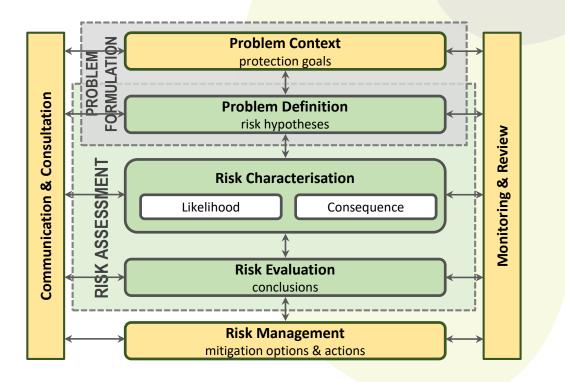
This process is:

- contextualised
- science based performed on a case by case basis
- iterative
- comparative

and take into consideration


- the nature of the introduced sequences (the trait)
- the characteristics of the organism
- the receiving environment

and interactions between these


ENSURING SUSTAINABILITY

ENSURING SUSTAINABILITY

Society

Science

Adapted from Wolt et al. 2010. Transgenic Research 19: 425-436 & Johnson et al. 2007. Trends in Plant Science 12(1): 1-5.

A FRAMEWORK FOR RISK ANALYSIS

Setting the context & scope Management g Risk assessment Assessme endpoints Test endpoint

Richards Sessment

A Shazard x exp Threshold vacant azard x exp sure) Scientific risk evaluation Risk o ecision Sk communication

Communication of the risk de Mon and how the decision was made Risk communication

Stages of risk analysis:

4dapted from Johnson et al. 2007. Trends in Plant Science 12(1): 1-5.

Key issue identification, risk assessment, risk decision-making and risk communication.

Progression through the system is not linear, but iterative

Green boxes - driven by society

Purple boxes - driven by science

RISK ANALYSIS OF GMOS: SETTING THE CONTEXT

What needs protecting?

- Harms can then be identified
 - A harm would be detected if there is an adverse change
- Risk assessment then tests whether these harms will occur
 - e.g. will cultivation have an adverse effect on the population size of a chosen species of importance

RISK ANALYSIS OF GMOS: SETTING THE CONTEXT

- The comparative approach is used i.e.
 - conventional agriculture is the usual baseline from which to evaluate effects
 - do activities with this GM crop cause greater impact than the unmodified crop
 - can also be compared to other potential practices (push pull systems)

RISK ANALYSIS OF GMOS: RISK ASSESSMENT

Risk assessment evaluates the likelihood and consequences to human health or the environment following exposure to a source of risk

THE WHAT CAN GO WRONG

Hazard Identification

HOW LIKELY

X WOULD IT BE A PROBLEM

Assessment)

(Likelihood/ Exposure X (Consequences/ Hazard **Assessment)**

WHAT IS THE RISK **Risk Characterisation**


RISK ANALYSIS OF GMOS: RISK ASSESSMENT

- Data is not a substitute for policy and decision making criteria - harms cant be discovered
- Focus on the quantity of data during risk assessment
- Safety data vs. quality and efficacy data
- Much of this data are irrelevant for risk assessment and may obscure risk assessment
- This can delay approvals as it takes longer to review dossiers, this can:
 - delay or prevent the introduction of beneficial products
 - prevent or delay the phase out of harmful products



2. RISK ASSESSMENT: SCIENTIFIC RISK EVALUATION

- No such thing as zero risk
 - therefore we accept some level of uncertainty or risk
 - the question is "are the risks acceptable?"

		RISK ESTIMATE			
LIKELIHOOD ASSESSMENT	Highly likely	Low	Moderate	High	High
	Likely	Low	Low	Moderate	High
	Unlikely	Negligible	Low	Moderate	Moderate
	Highly unlikely	Negligible	Negligible	Low	Moderate
		Marginal	Minor	Intermediate	Major
		CONSEQUENCE ASSESSMENT			

3. RISK DECISION MAKING: RISK MANAGEMENT

- Uncertainty is generally highest during early stage development of a GM crop.
 - the risks may not be fully characterised and are managed by reducing the likelihood of risks occurring
 - enables the generation of relevant biosafety data to reduce uncertainties/ characterise risks
 - this can result in changes in license conditions and feed into evaluations of the same or similar GMOs

 Risk management includes preparation of a risk management plan as well as monitoring and reviewing to provide feedbacks on the risk analysis

4. RISK COMMUNICATION

 Establishes a dialogue between decision makers and stakeholders to provide open, transparent and consultative risk based regulation of GMOs

- It is an important component of risk analysis
 - may include an explanation of the risk assessment findings and reasoning for any imposed risk management conditions

SUMMARY

 Risk analysis is a robust tool with which all decisions with activities associated with GMOs can be based

 Risk assessment and risk management activities are based on the context and scope of the in the first step of the risk analysis.

Data is not a substitute for policy

•decision making criteria (clear assessment endpoints must be determined- harms can't be discovered).

Questions?

James Rhodes | james@biosafety.org.za www.biosafety.org.za