

GMO RISK ANALYSIS SHORT COURSE

University of Pretoria, 4 September 2019

OVERVIEW

Harms

Hypothesis testing

Tiered assessments

Risk management

Risk thresholds

Sources of reliable information

Uncertainty

 The risk assessment cannot proceed until it is clear as to what it is that needs to be protected.

- Management / protection goals can be inferred from policy
 - Assessment endpoints must be defined from these protection goals. These must be an unambiguous expression of the environmental endpoint that must be evaluated

E.g. of assessment endpoints

- Population sizes of a species of importance
- Concentration of certain chemicals in waterways

- The identification of assessment endpoints is a key component in risk analysis
 - Harm would be detected if there is an adverse change to an assessment endpoint
 - The greater this adverse change the greater the harm
 - Harm can incorporate other elements such as the ability to reverse such harm
 - Benefits?
- Risk assessment then tests these assessment endpoints
 - E.g. will cultivation have an adverse effect on the population size of a chosen species of importance

- must link measurement endpoints with assessment endpoints
- Measurement endpoints are measurable responses related to the assessment endpoint e.g.
 - species richness
 - diversity indices
 - intensity of disease symptoms
 - yield/production

Nature and type of consequences

GENERIC CRITERIA FOR CONSEQUENCES

e.g.- negative effects on valued organisms (including protected species)

CONSEQUENCE CRITERIA (ASSESSMENT ENDPOINS)

e.g.- reduced population size of a valued lepidopteronproduction of a chemical toxic to protected mammals

MEASURABLE PROPERTIES FOR SPECIFIC CONSEQUENCE CRITERIA (MEASUREMENT ENDPOINTS)

e.g. -population morbidity

-presence and abundance

-biochemical, physiological, physical or development abnormalities

RISK ANALYSIS OF GMOS: RISK ASSESSMENT PROBLEM FORMULATION/ HYPOTHESIS TESTING

- Problem formulation can be employed to simplify the risk analysis process
 - still allows a rigorous scientific evaluation
 - makes risk analysis more accessible to different stakeholders
- This can be done by hypothesizing a testable chain of events that can lead to harm.
- Use measurement endpoints previously identified to come up with a hypothesis to harm.
- If it is a linear chain falsifying the hypothesis only requires falsifying one link
- If the chain is branched master links can be identified which if falsified would also falsify the risk hypothesis

RISK ANALYSIS OF GMOS: RISK ASSESSMENT HYPOTHESIS TESTING

Conceptual model

Introduction of insect resistant transgenic plants

Bt protein present in xylem and phloem

Bt protein accumulates in the sucking insect pests

Predators feed on these insect pests and are exposed to the Bt protein

Decrease of predator and parasitoid abundances

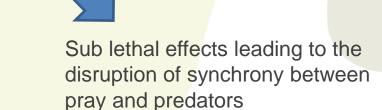
Sub lethal effects leading to the disruption of synchrony between pray and predators

Risk Hypothesis

Exposure to Bt by sucking insect pests leads to the decrease of predator and parasitoid abundances or to sub lethal effects leading to the disruption of synchrony between prey and predators.

Conceptual model

Introduction of insect resistant transgenic plants


Bt protein present in xylem and phloem

Bt protein accumulates in the sucking insect pests

Predators feed on these insect pests and are exposed to the Bt protein

Decrease of predator and parasitoid abundances

RISK ANALYSIS OF GMOS: RISK ASSESSMENT TIERED ASSESSMENT

- Tiered assessment can be used
 - Logical, science-based approach to assessing hazard to non-target organisms
- Early tiers are simple, worst-case exposure scenarios using surrogate species
 - laboratory assays
 - higher control
 - lower realism
- Tests only proceed to higher tiers if lower tier studies show adverse effects and if exposure is probable
- Higher tiers are more realistic, but also more complicated
 - The tiered approach system is cost effective, minimizes environmental risk

- Uncertainty is generally highest during early stage development of a GM crop.
 - the risks may not be fully characterised and are managed by reducing the likelihood of risks occurring
 - manage unacceptable consequences e.g. to manage volunteers that may contain a vaccine that may mix with following crops.
 - field trials enable regulators the opportunity to gain familiarity with the crop
 - enables the generation of relevant biosafety data to reduce uncertainties/ characterise risks
 - e.g. efficacy; higher tier field studies
 - this can result in changes in license conditions and feed into evaluations of the same or similar GMOs

- Contained use
 - Different physical containment levels (CL1-4/BL 1-4/BL1-4-P)
 - Can be applied to all contained use applications (laboratories, screenhouses, greenhouses, pilot plants)
 - Containment levels provide administrative controls, work practices and procedures, equipment and facility features required to achieve a designated level of containment
 - The aim is to prevent propagules from inside the containment area to enter the outside environment

- Field Trials
 - Controls to restrict gene flow (isolation distances, guard rows)
 - controls to restrict access (fences)
 - limited size, duration and locations
 - not used for human of animal feed

ISOLATION DISTANCES

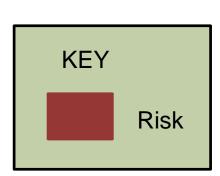
CONTROL OF VOLUNTEERS

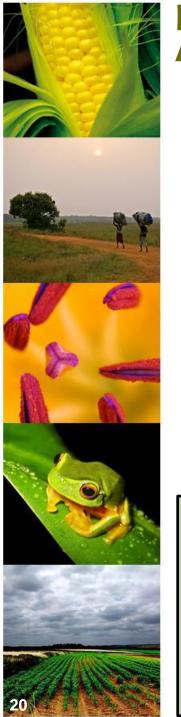
- The focus on commercial/ unconfined release is on thorough risk assessment with few or no risk mitigation strategies
- Risk management may be used to
 - decrease the complexity of an ERA e.g. in the US GM cotton cultivation is banned in areas where feral cotton grows.
 - Risk management may be used to reduce data requirements
- A risk management plan should be monitored for efficacy and to ensure compliance with permit conditions

- Technology suppliers must educate users of the technology e.g.
 - planting of refuges for *Bt* crops.
 - rotation of herbicides for HT crops

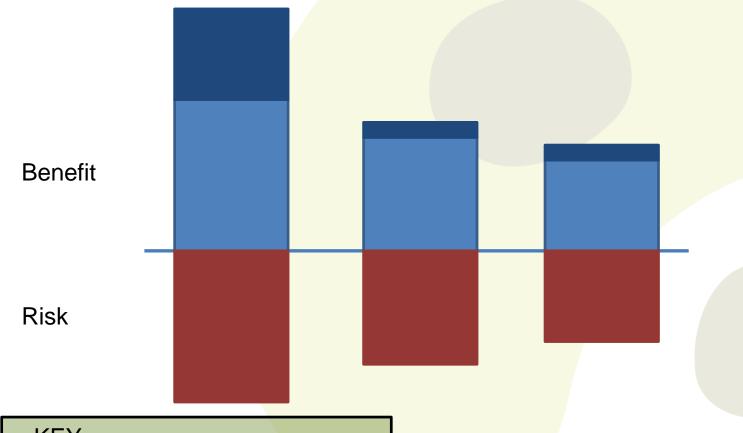
RISK ANALYSIS OF GMOS: RISK DECISION MAKING ACCEPTABLE THRESHOLDS OF RISK

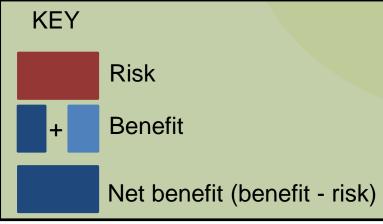
- No such thing as zero risk
 - therefore we accept some level of uncertainty or risk
 - the question is "are the risks acceptable?"


		RISK ESTIMATE			
- .	Highly like <mark>ly</mark>	Low	Moderate	High	High
LIKELIHOOD ASSESSMENT					
	Likely	Low	Low	Moderate	High
	Unlikely	Negligible	Low	Moderate	Moderate
LII	Highly	Negligible	Negligible	Low	Moderate
	unlikely				
		Marginal	Minor	Inte rmediat	Major
				e	
		CONSEQUENCE ASSESSMENT			



RISK ANALYSIS OF GMOS: RISK DECISION MAKING ACCEPTABLE THRESHOLDS OF RISK


Acceptable threshold of risk



RISK ANALYSIS OF GMOS: RISK DECISION MAKING ACCEPTABLE THRESHOLDS OF RISK

RISK ANALYSIS OF GMOs: RISK DECISION MAKING ACCEPTABLE THRESHOLDS OF RISK

- Are the risks acceptable taking into account proposed risk management options?
- Insufficient information- ask for more information
- Approve with minimal risk management (including monitoring) conditions
- Approve with practical risk management conditions
- Refuse the application if one or more of the identified risks pose unacceptable risks

RISK ANALYSIS OF GMOs: RISK DECISION MAKING MONITORING

- Monitoring can be defined as the systematic measurement of variables and processes over time, guided by specific, well defined reasons for collecting the data, for example, to ensure certain standards or conditions are being met or to examine potential changes.
- Environmental monitoring includes:
 - Case specific monitoring is well defined, hypothesis driven and is generally aimed at confirming that the assumptions used in the risk analysis are correct
 - General surveillance on the other hand is aimed at identifying effects which were not anticipated in the risk analysis and is therefore based on consent as opposed to strict hypotheses

RISK ANALYSIS OF GMOs: RISK DECISION MAKING MONITORING

 Possible harms, assessment endpoints, risk acceptance criteria, threshold values, risk management practices, etc. should be integrated into a possible monitoring plan for the particular GMO.

 Monitoring should take into consideration already implemented risk management activities

RISK ANALYSIS OF GMOS RISK COMMUNICATION

 Establishes a dialogue between decision makers and stakeholders to provide open, transparent and consultative risk based regulation of GMOs

It is an important component of risk analysis

 should include an explanation of the risk assessment findings and reasoning for any imposed risk management conditions

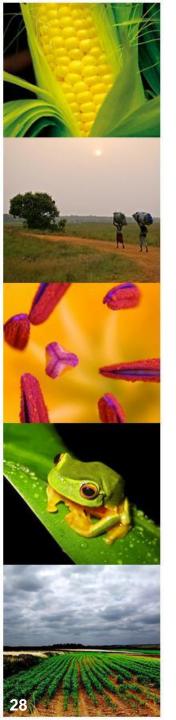
Product evolution **Product Product Product** development discovery application GMO R,D&C Variety Sales, **Product** Line Gene Crop Crop marketing & development concept discovery transformation selection production & testing export

> CONTAINED USE

FIELD TRIALS

GENERAL RELEASE

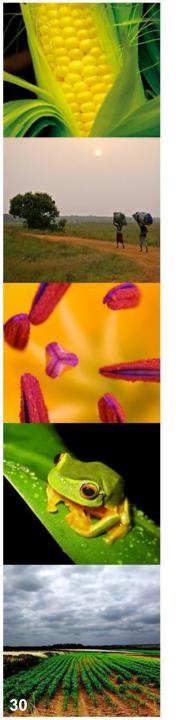
THE BIOTECH PRODUCT DEVELOPMENT PIPELINE



RISK ANALYSIS OF GMOS SOURCES OF RELIABLE INFORMATION

	Reliability	Appropriateness
1	Validated studies conducted according to international protocols meeting defined standards.	Experimental data on the GMO and/ or parent organism in the Australian environment.
	Peer reviewed literature—strongly supported reports, models, theories.	Experimental data on the GMO and/or parent organism overseas.
	Peer reviewed literature—single report, model, theory.	Experimental data on modified traits in other organisms.
	Opinion of an expert familiar with the GMO, parent organism, modified traits, ecology.	Experimental data on related surrogate systems.
	General biological principles.	
	Other technical reports, specialist literature, government reports, etc.	
Increasing	Experience of no reports of a problem.	
value	Unsubstantiated statements.	

from OGTR, Risk Analysis Framework 2013


RISK ANALYSIS OF GMOS UNCERTAINTY

- Uncertainty is intrinsic to risk analysis, e.g.
 - source of risk
 - type and degree of harm
 - the chance of harm occurring
 - the level of risk
 - efficacy of containment
- Risk analysis is part of a process to analyse and address uncertainty
 - always some level of residual uncertainty
 - if uncertainty is critical to decision making further analysis can be carried out such as meta analyses or worst case scenarios

RISK ANALYSIS OF GMOS UNCERTAINTY

- Approaches to address uncertainty include:
 - establishing parameters for data quality
 - obtaining additional data
 - identifying and correcting errors
 - applying conservative estimates
 - apply upper and lower bound of estimates
 - independent review or expert opinion
 - clear definitions of key words
 - re-evaluation against the context and scope
 - applying additional controls/ containment to manage risk

RISK ANALYSIS OF GMOS UNCERTAINTY

- Explicit consideration of uncertainty
 - increased clarity and credibility
 - highlights areas where more focus is needed
 - more effective communication of risk

Treatment of uncertainty on a case by case basis

TAKE HOME MESSAGES

 The basis of all regulatory activities associated with GMOs, including risk management options, should be based on a comprehensive risk analysis.

 Approaches such as problem formulation and tiered assessment can simplify the risk analysis process

 Practical risk management may be used to ensure activities occur within an acceptable level of risk (NB for contained and confined activities).

 Ensure that regulatory frameworks are adequate- need to adapt and keep abreast of developments

THANK YOU

James Rhodes | james@biosafety.org.za www.biosafety.org.za